US 2005/0005261 Al

implementation for which a package has been modeled.
Programs can be dynamically constructed at runtime by
accessing the various packages and models and performing
operations. Since there exists a single set of interfaces
defining the API to call any method or construct any
component, it becomes relatively easy to build applications
that use a CIE to construct dynamic programs at runtime.

[0413] A persistence engine is necessary for a component
integration engine that wishes to store data related to
instances created or dynamic programs to be stored for
future use. The persistence engine can be as simple as saving
the assemblies to files as XML or it may be as complex as
a full Object-Relational Mapping Engine (see details in
section below). The persistence engine uses metamaps (a
mapping of one meta-implementation to another meta-
implementation) to determine how to persist the given
instance. A broker that performs the actual work of storing
or retrieving the object interprets these maps. Like all other
parts of a CIE, the persistence engine enforces access and
security constraints based on authorizations related to the
authentication of the user.

[0414] Providing commonly used services as components
in the component integration engine increases the reuse of
that code and reduces the amount of code necessary to create
new applications. A common pattern for providing these
services is to create command architectures. Each command
takes a set of input and produces output. With a component
integration engine, commands become much more powerful
and flexible. Since each component has the metamodel layer
to describe the structure of its input and output, commands
can be created with much more complex input and output
models while still being understandable to the user. Com-
mands are also more configurable through the use of the
meta-implementation layer, allowing generalized commands
to be configured to perform specific tasks.

[0415] The services described below are examples of the
types of services a component integration engine may pro-
vide. These do not represent all possible services. Like all
other parts of a CIE, the common services enforce access
and security constraints based on authorizations related to
the authentication of the user.

[0416] This service provides access to the objects in the
environment in which the component integration engine is
running. It provides the ability to read the configuration of
any shared object or service in the environment, to add or
remove these objects or services, or reconfigure these
objects and services.

[0417] A database service provides access to databases
and other database-like data stores like flat-files, fixed-
length files, and spreadsheets. Commands may exist to
execute SQL, store and retrieve data, and alter the relational
structures in the database. Database specific commands may
allow configuration of the database environment.

[0418] A domain service provides access to the domains
that exist in the component integration engine. Commands
may exist to start, suspend, resume, stop, or dispose of
services and shared objects. Commands may exist to create
new virtual hosts and domains. Used together with the
configuration service, the domain service provides complete
control over the environment in which the CIE resides.

[0419] An email service provides access to email servers.
Commands may exist to send and receive email messages,

Jan. 6, 2005

manage mail stored on an email server, add or remove users
from message lists, and add or remove users from the email
server.

[0420] A formatting service provides formatting of textual
information. Commands may exist to process mail-merge
templates, XSLT transformations, or tag libraries.

[0421] An image service provides access to image
manipulation and creation activities. Commands may exist
to create images from GUI components, create images based
on XML descriptors, or draw text as images.

[0422] A messaging service provides access to messaging
services. Messaging services guarantee delivery of a mes-
sage to those parties that have registered interest in receiving
messages or to those parties to whom the message is
addressed.

[0423] A naming service provides access to directory and
naming context servers. Commands may exist for user
lookup, user password verification, computer registry access
and modification, and phone book lookups.

[0424] An object store service converts an object structure
to a state where it will exist even after the object has been
destroyed. Commands may provide object-relational map-
ping, Enterprise Java Beans, or XML file creation.

[0425] A processing service allows the creation of new
commands or services through the creation of a process
control structure. This control structure may contain loops
and branches and other operations available as part of the
CIE. When a user requests the execution of a specific
process, it is executed like a virtual program. Security
restrictions determine the ability of users or programs to
create new processes.

[0426] A resource service provides access to files, URLs,
database LOBS, and other sources of binary and textual
data. Resources serve as a persistence mechanism for binary
and textual data. Commands may exist to create new
resources, delete existing resources, or read the content of a
resource.

[0427] A roadmap service allows the creation of new
commands or services through the straightforward combi-
nation of other existing commands. A roadmap specifies
each step in a process in the order in which it should occur.
The commands in this service execute the roadmap.

[0428] A schedule service provides for the scheduling of
activities on a one-time or reoccurring basis. Commands
exist to schedule activities and reminders for these activities
for any desirable interval and reoccurrence. Commands also
exist to view existing activities and remove activities.

[0429] A seccurity service provides access to the system
security settings. Normally, security is read-only and
restricted to those users with appropriate access. Sometimes
it is useful to have access to commands that retrieve the
current user’s identity, so it can be passed as parameters to
other commands (like logging).

[0430] Several very difficult to implementation concepts
become very simple when a component integration engine is
applied to them. Described below are some of these imple-
mentations and the manner in which a component integra-
tion engine simplifies them.



